ЛаКосм

 

      

      Общество с ограниченной ответственностью  "Лазер- Косметика"

 

 

YOUR VERY NICE
SLOGAN GOES HERE...

 

 

 

 

Публикации из мировой прессы

 

 

Все о лазерах из энцеклопедии "Традиция"
Косметические процедуры

 

Удаление волос лазером

 

Шрамы от угрей и их обработка
Методика удаления волос лазером

 

Лазерное склерозирование

 

 

 

Способы удаления татуировок
Причины старения кожи

 

Публикации
Продукты Beauty RF
Продукты Light PULSE
Главная
Продукты Nd-YAG
Прайс-лист
  Россия, 620135 г. Екатеринбург, пр. Космонавтов, 62-68, тел./факс: (343) 334-37-15, +7 92210 04674, mail: 002_@mail.ru   
© 2008, ООО "Лазер-Косметика", Web-мастер  - М.Б.В - old-familiar@yandex.ru

Лазер

Материал из свободной русской энциклопедии «Традиция»

    Ла́зер (англ. LASERLight Amplification by Stimulated Emission of Radiation, «Усиление света с помощью вынужденного излучения») — устройство, использующее квантовомеханический эффект вынужденного (стимулированного) излучения для создания когерентного потока света. Луч лазера может быть непрерывным, с постоянной амплитудой, или импульсным, достигающим экстремально больших пиковых мощностей. Во многих конструкциях рабочий элемент лазера используется в качестве оптического усилителя для излучения от другого источника. Усиленный сигнал очень точно совпадает с исходным по длине волны, фазе и поляризации, что очень важно в устройствах оптической связи.

Обычные источники света, такие как лампа накаливания, излучают свет в разных направлениях с широким диапазоном длин волн. Большинство из них также некогерентны, то есть фаза излучаемой ими электромагнитной волны подвержена случайным флуктуациям. Излучение обычного источника не может, без применения специальных мер, дать устойчивую интерференционную картину. Кроме того, излучение нелазерных источников обычно не обладает фиксированой поляризацией. Напротив, излучение лазера монохроматично и когерентно, то есть имеет постоянную длину волны и предсказуемую фазу, а также хорошо определённую поляризацию.

С другой стороны, некоторые типы лазеров, например жидкостные лазеры на растворах красителей или полихроматические твердотельные лазеры, могут генерировать целый набор частот (мод оптического резонатора) в широком спектральном диапазоне; это свойство делает возможной генерацию сверхкоротких импульсов порядка нескольких фемтосекунд (10−15 с) с помощью синхронизации мод.

Лазеры созданы на стыке двух наук — квантовой механики и термодинамики, но фактически, многие типы лазеров были созданы методом проб и ошибок.

 Принцип работы и история изобретения

 

Устройство первого в мире твердотельного лазера на рубине (1- рубиновый стержень, 2- импульсная лампа накачки, 3- светоотражающий кожух, 4- лазерный луч, 5- полупрозрачное зеркало, 6- непрозрачное зеркало, 7- поджигающие электроды)

Основная статья: Устройство лазера Первый работающий лазер был сделан Теодором Майманом в 1960 году в исследовательской лаборатории компании Хьюза (Hughes Aircraft), которая находилась в Малибу, штат Калифорния с привлечением групп Таунса из Колумбийского Университета и Шалоу из компании Bell laboratories. Майман использовал рубиновый стержень с импульсной накачкой, который давал красное излучение с длиной волны 694 нанометра. Примерно в то же время иранский физик Али Яван представил газовый лазер. Позднее за свою работу он получил премию имени Альберта Эйнштейна.

Основная идея работы лазера заключается в инверсии электронной населённости путём «накачки» рабочего тела, подводя к нему энергию, например в виде световых или электрических импульсов. Рабочее тело помещается в оптический резонатор, при циркуляции волны в котором её энергия экспоненциально возрастает благодаря механизму вынужденного излучения. При этом энергия накачки должна превышать определённый порог, иначе потери в резонаторе будут превышать усиление и выходная мощность будет крайне мала.

Гелий-неоновый лазер. Светящийся луч в центре — это не собственно лазерный луч, а электрический разряд, порождающий свечение, подобно тому, как это происходит в неоновых лампах. Луч проецируется на экран справа в виде светящейся красной точки.

Инверсия электронной населённости также лежит в основе работы мазеров, которые принципиально похожи на лазеры, но работают в микроволновом диапазоне. Первые мазеры были сделаны в 19531954 гг. Н. Г. Басовым и А. М. Прохоровым, а также независимо от них американцем Ч. Таунсом и его сотрудниками. В отличие от квантовых генераторов Басова и Прохорова, которые нашли выход в использовании более чем двух энергетических уровней, мазер Таунса не мог работать в постоянном режиме. В 1964 году Басов, Прохоров и Таунс получили Нобелевскую премию по физике «За основополагающую работу в области квантовой электроники, позволившую создать генераторы и усилители, основанные на принципе мазера и лазера».

Излучение лазера может быть настолько мощным, что им можно резать сталь и другие металлы. Несмотря на то, что луч лазера можно сфокусировать в очень маленькую точку, она всегда будет иметь конечный ненулевой размер благодаря дифракции. С другой стороны, размер сфокусированного лазерного луча всегда будет значительно меньше луча, созданного любым другим способом. Например, луч небольшого лабораторного гелий-неонового лазера разойдётся всего примерно на 1,5 километра на расстоянии от Земли до Луны. Конечно, некоторые лазеры, особенно полупроводниковые, благодаря малым размерам, создают сильно расходящийся луч. Однако эту проблему можно решить применением линз.

Влияние дифракции можно обойти, применяя волноводы, в данном случае оптоволоконные линии.

 Использование лазеров

Применение лазеров в качестве светового сопровождения музыкальных произведений.

Основная статья: Применение лазеров

С самого момента разработки лазер называли устройством, которое само ищет решаемые задачи. Лазеры нашли применение в самых различных областях — от коррекции зрения до управления транспортными средствами, от космических полётов до термоядерного синтеза. Лазер стал одним из самых важных изобретений XX века.

Исключительно широкое использование лазеров в науке и промышленности объясняется их уникальными свойствами — когерентностью, монохроматичностью и возможностью достижения высочайшей плотности мощности излучения. Например, когерентность лазерного луча позволяет сфокусировать его в точку, практически совпадающую по размеру с дифракционным пределом, который для видимого спектра составляет всего несколько сотен нанометров. Это позволяет лазерным записывающим устройствам хранить гигабайты информации на оптических дисках, например, формата DVD. Хорошо сфокусированный луч позволяет достичь громадной плотности излучения, достаточной для резки, плавления и даже испарения самых тугоплавких материалов. К примеру, лазер на алюмо-иттриевом гранате с неодимовым легированием в режиме удвоения частоты работает на длине волны 532 нм (зелёный участок спектра) и при мощности всего 10 Ватт позволяет достичь энергий порядка нескольких мегаватт на квадратный сантиметр. В реальности, конечно, сфокусировать луч до пределов дифракции крайне сложно.

Популярные заблуждения

Вся современная поп-культура, особенно боевики и научная фантастика, полны заблуждений о лазерных технологиях. Например, вопреки фильмам, таким как «Звёздные войны», луч лазера абсолютно невидим в вакууме и в большинстве случаев на воздухе. Луч «пылает» только рассеиваясь на каких-либо частицах, например, пыли — точно также, как лучи солнца видны в запыленной атмосфере или в тумане. Только лучи очень высокой мощности могут быть видны в чистом воздухе благодаря рэлеевскому или рамановскому (комбинационному) рассеянию.

Кроме того, в фантастических фильмах луч распространяется довольно медленно, так что его движение можно проследить глазом, совсем как трассирующий снаряд. На самом деле, луч лазера распространяется со скоростью света и мы должны увидеть его сразу по всей длине.

Еще пример — во многих фильмах герой обнаруживает и обходит контур лазерной защиты, распыляя какое-либо вещество в воздухе. На самом деле, инфракрасные лазерные диоды сделать проще и дешевле, чем излучающие видимый свет. Именно поэтому использовать лазеры с видимым излучением в охранных системах совершенно бессмысленно.

Лазером в кино обычно режут всё, что попадётся под руку. Удивительно, но никто не обращает внимания, что мощности отражённого луча, который взрезает стальные двери, вполне достаточно, чтобы повредить сетчатку глаза взломщика, который не надевает очков.

Безопасность лазеров

Даже маломощные лазеры (с выходной мощностью несколько милливатт) могут быть опасны для зрения. Для видимых длин волн (400—700 нм), которые хорошо пропускаются и фокусируются хрусталиком, попадание лазерного луча в глаз, даже на несколько секунд, может привести к частичной или даже полной потере зрения. А лазеры большей мощности могут приводить даже к повреждению кожных покровов.

Лазеры делятся на 4 класса безопасности, от 1 — практически безопасный, до 4, у которого даже рассеянный луч может стать причиной ожога глаза или кожи.

Наклейка на CD-рекордере, предупреждающая об использовании в устройстве полупроводникового лазера Класс 1

Класс 1. Лазеры и лазерные системы малой мощности, которые не могут излучать уровень мощности, превышающий максимально разрешённое облучение. Лазеры и лазерные системы Класса 1 не способны причинить повреждение человеческому глазу.

Классификация лазеров

Основная статья: Виды лазеров

Полупроводниковый лазер, применяемый в узле генерации изображения принтера HP LaserJet 5L

Полупроводниковые лазерные диоды

Расшифровка обозначений

См. также

 

Сайт создан в системе uCoz